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Ahstract--A simple predictive tool for analyzing the annular-core flow of two immiscible liquids is 
presented. The model puts under a common framework all possible flow situations of laminar-laminar, 
turbulent-turbulent or mixed flow regimes in the two phases involved for wide ranges of viscosity and 
density ratios. Comparison with available experimental data of pressure drop and in situ hold-up shows 
a satisfactory agreement. 

The potential of the core flow configuration for achieving pressure loss reduction and power saving in 
the transportation of very viscous oils is evaluated, addressing the problem of tube size scale-up. 
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1. I N T R O D U C T I O N  

The contact of two immiscible liquids is encountered widely in the chemical and petroleum 
industries. Although there is a considerable amount of published information on the flow of 
liquid-gas and liquid-solid mixtures, there is relatively very little on the flow of liquid-liquid 
mixtures. 

In liquid-liquid flows, as in gas-liquid systems, the two phases can be distributed in the conduit 
in many configurations called flow patterns, differing from each other in the spatial distribution 
of the interface. The flow pattern depends on the operational variables, physical properties of the 
fluids and geometrical variables of the system. 

One of the flow patterns, which appears most attractive from the viewpoint of pressure loss 
reduction in liquid transportation lines, is that of the central core flow of highly viscous fluid, while 
the less viscous liquid (water) forms a uniform annulus in the region of high shear rate next to the 
pipe wall. 

The annular (water and oil) core pattern, or simply core flow, being the one of most interest in 
technological processes, has drawn attention during the last two decades. The theoretical studies 
of core flow can be divided into two main groups: the first includes studies which utilize the general 
concept of encapsulation of solids or highly viscous liquids in a stream of less viscous fluid; in the 
second group, direct solutions of the two fluids hydrodynamic or instability equations are most 
common. 

Charles (1963) presented a theoretical analysis of concentric flow of cylindrical capsules in 
laminar or turbulent annuli. This study was followed by several experimental studies (Ellis 1964a,b; 
Ellis & Bolt 1964; Round & Bolt 1965) on the transport of single cylindrical or spherical capsules 
in a stream of. water. In parallel, numerical analyses for laminar flow around free cylindrical 
capsules (Newton et  al. 1964; Kruyer et  al. 1967) or fixed eccentric cores (Redberger & Charles 
1962), have also been reported. These studies are relevant to liquid-liquid annular flow when the 
core viscosity goes to infinity. 

Attempts to diverge from the capsule model and solve for the flow fields in both the core and 
the annular gap have been presented by Russell & Charles (1959), Bentwich (1964) and Bentwich 
et  al. (1970). The analyses refer to the velocity fields for fully developed laminar motion in s m o o t h  
annular concentric or eccentric flows. 

A rather different direction is represented by a series of theoretical studies by Ooms & Beckers 
(1972), and later on by Ooms et  al. (1984, 1985) and Oliemans (1986). Ooms (1972) considered the 
hydrodynamic stability of core-annular flow of two ideal liquids with a smooth interface in 
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horizontal pipes. It was concluded that the core-annular flow of two ideal liquids is hydrodynam- 
ically unstable, whereby the interface becomes rippled. In parallel, Ooms & Beckers (1972), and 
later Ooms et al. (1984, 1985), consider the annular flow surrounding a rigid core by resorting to 
laminar hydrodynamic lubrication theory, and assuming the existence of highly nonsymmetric 
waves on the core surface. This approach was recently extended by Oliemans (1986) to a turbulent 
lubrication model. These models are numerically complicated and also require as input the annular 
layer thickness and the interfacial waviness characteristics (which are to be modeled or measured 
at the flow conditions under consideration). 

The role of the interfacial waviness in counterbalancing the buoyancy of an oil core flowing in 
a water annulus is widely dealt with in a subsequent paper (Moalem Maron et al. 1990), where 
the stabilizing mechanisms of core flow are explored. The transitions to other liquid-liquid flow 
patterns are the concern of separate studies (Brauner & Moalem Maron 1990, 1991a-c). Here, 
however, the main objective is to present a simple practical prediction tool for general annular 
liquid-liquid flow. As distinct from previous related studies, which are concerned with either solid 
capsule flow (Charles 1963; Oliemans 1986) or are restricted to laminar-laminar flow regimes, the 
approach proposed herein represents an attempt to put under a common frame all possible flow 
regime combinations in the annular and core phases. As is shown, the approach, though based on 
the average two fluid quantities, still points out all the main features of the annular liquid-liquid 
flow pattern for a wide range of liquid-liquid systems. 

2. PHYSICAL MODEL AND G O V E R N I N G  EQUATIONS 

Consider an annular flow configuration of two immiscible fluids, a and b, in a horizontal or 
slightly inclined conduit, as illustrated in figure 1. Assuming fully developed flow, the integral forms 
of the momentum equations for the core (c) and annular (w) regions are: 

-Ac(d~zP__')T-'ciSi+pcAcg sin f l = 0 ;  core region; [1] 
\ tlx / 

and 

with 

and 

-Aw  ~ -TwSw+TiSi+pwAwgsin[3=O; 

p: = p~c¢: + pb(l - ~);  

wall region; [2] 

Aac 
:~: = - - ;  [3]  

A: 

a bw • 

Aw ' [4] p~ = pbC¢w + p~(1 -- C¢w); ~w = - -  

Figure 1. Schematic description of two-phase annular flow. 
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where the upper signs in [1] and [2] correspond to a faster flowing core region and Ao Aw, Pc and 
Pw are the flow areas and equivalent densities of the core and annular (wall) regions due to 
entrainment of (1 -~tc) of phase b into a and (1 -0tw) of phase a into phase b. Thus, for a pure 
core phase a and a pure annular phase b, 0re = ~tw = 1. Eliminating the pressure gradient, dP/dx,  
yields: 

( '  ' )  Sw + ziSi + (Pw - Pc)g sin fl = 0. [5] - wAw- 
As conventionally used in two-fluid models, the wall shear stress ~w is expressed in terms of the 
corresponding friction factors fw based on the annulus hydraulic diameter Dw and the correspond- 
ing Reynolds numbers: 

U~ - [Ow Uw\-nw 4Aw 
*w=fwOW2 ; ; & =  s -7 ;  [6] 

where Sw is the perimeter of the wall. Note that, in view of [6], the wall friction factor, fw, is 
determined by the a priori unknown actual annular thickness and velocity, Uw. These, in turn, are 
evaluated (among other flow variables) taking into account the mutual interaction between the two 
phases, e.g. the interfacial shear and the relative velocities. 

As distinct from stratified flow, where the velocity of one phase may alternatively exceed the 
other (Brauner & Moalem Maron 1989), in a horizontal (or slightly downward inclined) annular 
flow, the core velocity ought to be higher than the annular phase velocity in order to satisfy [1]. 
Consequently, the hydraulic diameter for the annular phase, Dw, is defined in [6] as for a free 
interface, and only the upper signs in [1] and [2] are relevant. The interfacial shear stress between 
the two phases, zi, is evaluated by 

z i=foc(Uc 2 ~ ; f i=BC~ [7] 

In [6] and [7] the constants C¢, Cw, nw and n~ are chosen according to the flow regime in each 
phase. Clearly, the two phases in annular flow may be in laminar-laminar (L-L), laminar-turbulent 
(L-T), turbulent-laminar (T-L) or turbulent-turbulent (T-T) regimes. These constants are 
given the following values: C = 16 and n = 1 for laminar flow; and C = 0.046 and n = 0.2 for 
turbulent flow conditions. B denotes the augmentation of the interracial shear due to interracial 
waviness. 

In the modeling of gas-liquid flows where U¢ = Uo >> U~, the slower velocity U~ in [7] is 
sometimes replaced by the interracial velocity. Here, however, consistent with the two-fluid model 
used, where the velocity profiles are unresolved, average velocities are used. Also, in liquid-liquid 
systems the interface appears less roughened and is characterized by long smooth waves, and thus 
the augmentation of the interracial shear factor due to waviness is ignored (B = 1). Moreover, as 
the velocities of the two phases in liquid-liquid systems are comparable, the modeling becomes even 
less sensitive to the estimation of the interracial friction factor. 

In order to express the actual region velocities, U~ and U~, in terms of input flow rates and in 
situ hold-up, overall mass balances on the two fluids a and b are formulated (assuming no slip 
between the phases in each region): 

AU~ = UwAw(1 - ~w) + Uchc~; 

and 

which yield 

U.s  =--Q° ' [8a]  
A '  

AUbs = UwAw~w+ UcAe(1 --~c); U~ Qb 
A '  

~ U~ .4  (1 - OCw) - ~)o¢~ 

[8b] 

[9a] 
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Uw fl~__ cte- (l - ae)~b 
o~ = v~-Z = A~ ~T;-~,w " i  ' 

where 

~=u=. 
us '  

with U.~ and Us being the superficial velocities of the 
dimensional variables are defined by 

fluids involved. The geometric 

[9b] 

[9c] 

non- 

5=Do. - S, _~ 
D '  S i = D  =rd~G ~w= =rt ;  

A n A ,  rc - 2  .~  _ A w  4 . . . .  ; = -- D<), [101 2 . . . .  D2 4; "~¢ D 2 4De * -~ -5  (1 -2 . 

- 42. 
- - D e .  D,,, = --~-w = 1 ~2 

Introducing nondimensional variables and substituting [6] and [7] into [5], the normalized form 
of the latter reads: 

Pc(VaL~¢Oe)-"~(1 10-~w~2(L L )  ~ ~2 P'X2(%D.O.)-'*& 02w+4Y=O. [ll] - -  - Si Ue - 
p° ~ -~ r e / \ A .  + Ao p~ \~. A. 

The two-phase flow parameters X 2 and Y evolve through the normalization of [5] and are given by 

(4Cw'~(UsD'~n*pbU2s 
. 2 _ \ - - ~  / \ - ; Y  / - T -  
z - ~ p - ~  [12a] 

\--if/\%-y/ -5 
and 

( O .  - P ~ ) g  s in  fl [12b] 

LD,/k L / 2 
Since the various geometric parameters and the nondimensional velocities, Ue and Uw, are all 
functions of the core diameter,/)e, [11] states, in general that 

/% =f(x: ,  Y, q~, no, nw, ae, %), [13] 

where ne and nw stand for the actual flow regime parameters of the two phases and are determined 
through the solution. 

The two-phase pressure gradient is obtained, as usual, by eliminating zi from [l] and [2], whereby, 
in dimensionless form, it is given by 

_ ( d P ) -  - 1 ~ ~2 
= . 2  Pw Sw Uw/v~ - - "~-~* ~" (4Cc'~(U.,D-~X~'p.U:.,=4z-~b 2 t-~ DwUw) -flY [14a] 

\ D / \  v ° /  2 
and 

*b=(4C.. (UsD.. * pbU~= X--7, [14b] 
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with 
po2o + pw2, [15] 

P = (2° + 2 , , ) ( p . -  po)" 

In [14a,b], ¢= and ¢b represent the references of the two-phase pressure gradient to either of the 
two fluids. From the application point of view, it is very common to refer the two-phase pressure 
drop to that which would have been obtained with the less viscous fluid (b) flowing alone at the 
two-phase mixture velocity, whereby 

17= ; 
d P )  4 f~pb(U~ + Ut,) 2 
~ x s = D  2 

[16] 

Since this reference (superficial) flow is practically always in the turbulent regime (with Cs = 0.046 
and ns = 0.2), 17 may be simply related to ~b (or to ~=, see [14b]): 

16 
rI = ~ ~b Reg°s( 1 + q~)-l.s; laminar b; [17a] 

17 = ~b (1 + ~b)- ~8; turbulent b. [17b] 

Whereas ~a expresses the pressure reduction associated with the transportation of viscous fluids 
in a core flow configuration, the 17 factor points out the extent of increase expected in the two-phase 
pressure drop in relation to the value based on a single-phase flow of the less viscous fluid at the 
total (two-phase) flow rate. 

It is to be emphasized that the denominators in [14a,b], although including superficial Reynolds 
numbers, do not always represent the "superficial" pressure drops of the phase involved (as usually 
stated in the literature), since the constants C¢ and n¢ or C,  and nw are determined according to 
the actual flow regimes when the two (annular and core) phases coexist. Similarly, the definitions 
of Z 2 and Y in [12a,b], as they have evolved from the normalization procedure, include again 
superficial Reynolds numbers, but also initially-unknown actual two-phase parameters. Thus, ~a, 
~b, X 2 and Y include mixed superficial and actual parameters. For convenience of applicability it 
is therefore suggested here to present the results below in terms of X~, the Lockhart-Martinelli 
parameter, which is fully based on superficial variables: 

d P \  Cb~ . n 
-dxx ]bs/ 2 ~ Rea~( ~'- ~) 

Z~ = [ d P \  = Z C - a ~ ~ "  [181 
171  -~- Reg ( °'- °) \UX/a~ ~c 

Here nas, ribs, C~ and C~ are determined based on the superficial Reynolds numbers, R%~ and Rebs, 
of each fluid and, in principle, may be different from the corresponding actual values. The flow 
regime may be laminar in one phase, while turbulent in the other. However, in the range of 
sufficiently low flow rates, where the two phases are laminar based on both the actual and 
superficial Reynolds numbers, [18] yields Z~ = Z 2. Similarly, for sufficiently high flow rates, where 
turbulent regimes prevail in both phases, actual X z and superficial X~ are identical. In between these 
two extremes there exist flow rate ranges for the two phases where Z: may be different from Z~ 2. 

As indicated by [11] and [14a,b], or simply by [13], the solution is obtained in terms of X~, Y 
and q~. For horizontal flow, only X~ and 4) remain (assuming ~c and 0~w to be known). Consistent 
with the above, in the L-L and T-T extremes, [12a] and [18] reduce to: 

Z2 =/,t b 1 . L(a)-L(b); [19] 

and 

Z~ = \ -~/  \-~j \Vb/ ~ LS ; T(a)-T(b); [20] 
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while for mixed flow regimes: 

and 

16 #b l  16 (#b]O'2(pb~0"8 l_i.____ffRebq08; L(b)-T(a); [21] 
g~ = 0.04~ ~,~ 49 Re~°8 - 0.046 \ # ,#  \ p j  49 

g~ z = 0.046 /~b 1 Re0~ 8 0.046/\[#b| °2 / \{Phi °8 1 o8 L(a)--T(b). [22] 
1 6 #4 49 = ~ ~ZJ ~Pa/I 491.'"~ Rea~ ; 

As noted above, whenever the superficial and actual flow regimes are identical, [19]-[22] are valid 
for Z 2 as well. 

For a given L-L or T-T annular flow, the 49 - ; ~  are not independent parameters and X~ z is 
determined by 49 (and vice versa) as indicated by [19] and [20]. However, in the case of mixed flow 
regimes, as in L-T or T-L,  the relationships between 49 and Z~ include also the superficial Re 
number of  the phases, and thus X~ and 4) are two independent parameters of the given system. Also, 
for various two-fluid systems the relationships between Z~ and 49 quantitatively change according 
to the viscosity and density ratios of the fluid pair. For L-L conditions, the ;~ - 49 dependence 
is not affected by the density ratio, and hence, still identical results for systems of different density 
ratios are expected. It is to be noted, however, when a gas-liquid system is considered, 49 does not 
appear explicitly in [1 1] (or [1 3]) due to the U¢ >> Uw assumption. Consequently, whereas gas-liquid 
nondimensional pressure drop and hold-up data in horizontal tubes are well-correlated by a single 
parameter, Z, liquid-liquid systems generally depend on both Z and 49. 

3. C A L C U L A T I O N  P R O C E D U R E  AND A N A L Y T I C A L  S O L U T I O N S  

Given an annular flow system (flow rates, physical properties, tube diameter), the variables in 
[11] can all be expressed in terms of  De. As implied by [13], a solution for/)¢ can be obtained 
provided a¢ and aw are prescribed from experimental observations or from separate modeling for 
the mutual extrainment between the phases. The solution procedure is in fact of  an iterative nature, 
since the parameters no, nw, C¢ and Cw, which refer to the actual flow regimes, are determined 
through the iterative procedure. 

Fortunately, for the case of a horizontal laminar core (with either a laminar or turbulent annular 
phase), simple explicit solutions for the in situ hold-up,/)¢,  and the resulting pressure drop are 
obtained. These are summarized in table 1. 

Convergence to capsule flow models 

For a very viscous oil core, where #b/#,~0,  the solutions for Dc and ~ for a laminar or turbulent 
annular layer (given in table 1) reduce to: 

1 Ub~ ( 49 Aw = l_Z : . . . .  
/3c = \ ~ j  ; -~- 4~ + 1 U~s + Ubs - R; [23] 

and 

_ _ .  16 ~ ._ /~b  (49 + 1) 2 ~h = (49 + 1)2; H =0 . - - -~  Reg°s(1 + 49)0.2; laminar b; [24a] 
/~a 49 ' 

4), =----0"046 #b Re018 - - ( 4 9  + 1)5 ; ¢~h = (49 + 1)2; FI = (1 + 49)0.2; turbulent b. [24b1 
16 #,, 49 

Expressions [23] indicate that in the limit of  a high viscous core, the in situ hold-up of the less 
viscous phase (usually water) approaches its input volumetric ratio, R, and the in situ velocities 
of  both phases approach the mixture velocity. This bound is consistent with the experimental 
findings by Oliemans (1986). The two-phase pressure reduction factor (¢~-~ of  [24a,b]) increases 
linearly with the two-phase viscosity ratio. 

Optimal conditions 
The conditions under which a maximum pressure reduction is achieved by the addition of  the 

annular, less viscous, phase are obtained by exploring c~q%/c~49 = 0. Simple analytic expressions for 
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L(c)-L(w) 

Table 1. Core diameter and pressure drop for laminar core flow 

a¢, a w # I 

f 
G(4')'] ~2 

.11/2 
~c = { I - / ~ . .  G(4')~ 

{LF * +*  + 
F(4') ~t"'4'- ( 1 -  °tw)" G(4') or=- (1 - =¢)¢ 

4'[~= + ~w- 1] ' =, +=w-  1 

rt c, ~t w = I 

)ta + (4'K t 4' + 1 

Kt = P_..bb 

f[-m,, S(4')q "= + .  + G(4')) 

uo 4'6(4')'~ Fu. F(¢)-I '2 
= K, [(K,4')'~ + 4' + 

L(c)-T(w) 

[ 4' .11/2 
Bo 

{ .  D,.p. [ , A  ~ G~)'*-I  ''~ + G(¢)~. 

X by [22] 

4, 
/)¢ = (4'z + 4' + 1) 1/2 

¢ _  ~m 6(4') . = o - ( I - = o ) ¢  
o - Z  ~-~b(1--~) 2, G(4') a t¢+~t~- I  

X by [22] 

or 

~= = ~ [(K, 4')'/2 + 4' + 1 ] '  

L (x,4') '/2~---~ 1 

K~ = 0.046 ~ Re~8; 
16 /~ 

~) = K 2 (K~/24'  0'1 "Jr- 4' "~- 
4' 1.---~ ~- K~/24'o.~ "~ 1 1] 2, 

=o.o46( 4o2( qo, 
/(2 16 \/~.1 \ ~ /  Re°S 

the optimal input volumetric ratio ~.,, which yields the maximum pressure reduction, are obtained 
as long as the core phase is laminar. Thus, for L-L flows, utilizing q~ (given in table 1) yields: 

em = (1  + Kll2y 1- - -~ ' . ] ;  era(K,-'*0)= 1; K, =/J__~b;/j. [25] 

and for the turbulent annular phase and a laminar core with constant Rebs the optimal 4~ reads 

4~ (1 + K]/2"~ 2 0.046/Jo Re,~S. [261 
m = \ ' - l T _ - ~ ] ;  K , =  16 /J. 

No simple analytic expression is obtained for er. under turbulent annulus-laminar core conditions 
with constant R%s. It is also to be noted that since the reference pressure drop, used in the definition 
of 4~,  is that of  a pure core phase, which for laminar flow is linearly dependent on the volumetric 
input rate, [25] and [26] also yield the conditions of the maximum flow rate of the core phase per 
unit two-phase pressure gradient, QJ(dP/dX)Tp. 

The maximum power reduction (minimum power requirement for a given oil throughput) is 
obtained by solving for Crop satisfying 

l 
[27] 

Substituting q~. (given in table 1) in [27] (with Kt =/~b//~. for a laminar annular layer or 
Kt = (0.046/16)(1~b/#~)Re~ g for a turbulent annular layer) yields for either L-L or T-L flows: 

4~p(1 + Kt) + 3x/K, ~ p  - ~mp(2K, + 1) - 4 Kx/K~I~ p - 2 = 0. [281 

For /~b/#=-'*0, [28] yields Crop = 2. 
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4.  R E S U L T S  A N D  D I S C U S S I O N  

The calculated results presented below relate to horizontal annular flow of pure core and wall 
phases (0t c, 0t, = 1), since data or modeling of the mutual entrainment between the two phases are 
unavailable at the present time. In presenting the results, the relations of m situ hold-up and 
pressure drop to the nondimensional two-phase flow parameters, 4) and ~ ,  are discussed first. 
Then, comparisons with the available experimental data follow. 

General effects o f  Z~- q~ 

Figures 2 and 3 present the effects of the density and viscosity ratios on the core diameter and 
two-phase pressure drop as functions of the ~2 parameter for constant b-lines. The liquid pairs 
chosen for demonstration in figures 2 and 3 are those of the available experimental data used below 
(Charles et al. 1961; Oliemans 1986). For a given superficial velocities ratio, c~ = U~ / Ubs, the extreme 
points, denoted by ©, and O, relate to laminar flows (L-L) and turbulent flows (T-T), respectively. 
As the L-T transition has been found to take place earlier in two-phase flow [see, for example, 
Stellmach & Lilleleht (1972)], the transitional Reynolds number has been taken here as 1500. 

Starting with sufficiently low flow rates, where laminar regimes prevail in both layers, Z 2 = Z~ 
and is determined by ~b, as indicated by [19]. Increasing the flow rates, while maintaining 4) 
constant, the L-L points (nondimensional pressure drop and hold-up) remain unchanged as long 
as the laminar regimes prevail in both phases. Thus, point L-L represents a range of laminar flow 
rates. With a further increase in the flow rates, a point is reached where one of the layers becomes 
turbulent, and thus the ~b-line represents L-T or T-L flows, along which 4) and Z~ are independent 
parameters (as indicated by [21] and [22]). As the second layer too becomes turbulent, point T-T 
is reached, beyond which Z~ and 4) are again dependent parameters as seen by [20], corresponding 
to the high flow rates range. Clearly, for a given ~b-line, there exists a range of 
z~(L-L) ~ ;(~ -%< z2(T-T) defined by [19] and [20], where [11] yields physical solutions, between the 
points shown as C) and O. The intersection of [19] and [20] yields 

1 p .  

= = = - - =  [29] 

#b \Pb/  
t |  

For 4) < ~b~p, Z~ is increasing with the increasing flow rates towards the turbulent regimes. On the 
other hand, for 4) > ~blp, increasing the flow rates is associated with decreasing Z~. Therefore, the 
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Figure 2. Core flow geometry--effect of  fluid flow rates and physical properties. 
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Figure 3. Nondimensional pressure drop---effect of  fluid flow rates and physical properties. 

intersection point (defined by ~b = Va/Vb) is denoted here as the inversion point, IP. This point is 
easily identified in figures 2 and 3, where the arrows denote the direction of increasing flow rates 
at a given q$, moving from L-L  to L-T or T-L regimes, and finally to T-T regimes. Note that with 
4~ = ~bm, as the two-fluid flow rates are increased, moving from laminar to turbulent regimes, the 
solutions for/)¢ and the corresponding values of q~a and q~b change along a vertical line, since X, 
remains unchanged, while the solutions of [11] are functions of the flow regimes too (through nc 
and nw). 

A more detailed discussion concerning the hold-up and two-phase pressure drop at and around 
the inversion point is given by Brauner & Moalem Maron (1989). Here, however, it is to be noted 
that the choice of the more viscous phase as a reference for the two-phase pressure drop (figure 3) 
is for the purpose of presenting the two-phase pressure drop in terms of pressure reduction, as often 
referred to in liquid-liquid studies. As seen in figure 3(a-c) a pressure reduction is possible for 
~ / k t  b > 1, whereas figure 3(d) demonstrates that no pressure reduction is obtained when the more 
viscous fluid flows in the annular gap, Ita/ki b < 1. Obviously, for #J#b  < 1 as q~ -~0 (no addition of 
less viscous phase a), (~bs"~ 1. Also, the trend in figure 3(d), with the more viscous phase in the 
annular gap, is different• The trend is maintained when the pressure drop is normalized with respect 
to the core phase, as in figure 3(e). But since in this case q~ refers to the superficial pressure drop 
of the less viscous phase, it is not termed as pressure reduction• Note that, though core annular 
flow with a less viscous core yields no pressure reduction, it is also feasible and of practical interest 
as a way of protecting the conduit walls from corrosion or scale deposition effects (Hasson & Nir 
1969; Hasson et al. 1970). Actually, gas-liquid annular flows represent one extreme of a less viscous 
core phase of ~,//xb ~ 1. 

Inspection of figures 2 and 3 raises some points of interest. For ~a/#b >> 1 the in situ hold-up at 
a given q$ is insensitive to the gs parameter, which implies that the core diameter remains practically 
unchanged with the flow rates or the flow regimes as long as the input volumetric ratio is constant• 
On the other hand, the two-phase pressure drop is determined by both 4) and gs [see figures 2 and 
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3(a--c)]. Therefore, the Lockhart-Martinelli parameter, X~, cannot be used as the single correlative 
parameter in liquid-liquid systems, where usually #~/#b > 1. As the viscosity ratio decreases, 
/~a//ab < 1, as in figures 2(d) and 3(d), the general trends of the hold-up and pressure drop are 
different, and resemble those obtained in stratified flows, where the effect of ~b for a given Xs is 
relatively small (Brauner & Moalem Maron 1989). Thus, experimental data can be reasonably 
correlated only by the Z~ parameter, as originally suggested for gas-liquid systems. 

It is, however, to be noted that the results calculated above cover parametrically wide ranges 
of ~b and X, which may be beyond the transitions to other flow patterns. This is dealt with elsewhere 
(Brauner & Moalem Maron 1991b). 

Comparison with experimental data 

Having demonstrated the general characteristics of the calculated results, a comparison with two 
available sets of data for annular liquid-liquid systems at relatively low viscosity ratios (Charles 
et al. 1961) and high viscosity ratios Oliemans (1986) is presented in figures 4-7. Since the Charles 
et al. data relate to various flow patterns, only points which are in the range of annular flow have 
been chosen for comparison. As seen in figures 4 and 5, the agreement of the calculated hold-up 
range (L-L to T-T flows) with the measured values is fairly satisfactory for the wide range of 
viscosity ratios. As the viscosity ratio increases, both the data and the predicted results approach 
the line 1 - £32 = R = 1/(1 + ~b) (see [23]). Note that, since the data in figure 5 correspond mainly 
to turbulent water-laminar oil (where ~b and Xs are independent parameters), the scattering of the 
experimental data is to be attributed to the various (unreported) water Reynolds numbers and to 
the viscosity range (/~a//a b = 1500 to 8000). However, as the present prediction model indicates, for 
a high viscosity ratio, #a/#b > 1500, the effect of the viscosity ratio on the in situ hold-up at L-L 
as well as T-T conditions becomes moderate. 

Figure 6 represents the predicted two-phase pressure drop corresponding to the 5 cm tube 
experimental set reported by Oliemans (1986). As the data include various input volumetric 
oil/water ratios, R = 0.05 to 0.20 (q~ ~ 19 to 4), the calculated results are represented by a shaded 
area, which is in reasonable agreement with the measured pressure drop data. The experiments, 
as well as the predictions, yield an increasing two-phase pressure drop upon reducing the input 
water/oil ratio, and both are above the corresponding pressure drop that would have resulted with 
pure water flowing at an identical mixture velocity. The consistently higher values of the 
experimental data are understandable in view of the simple model used here, which utilizes smooth 
pipe correlations for estimating the wall and interfacial friction factors. Further improvements may 
depend on the availability of more sophisticated relations for z~ (and rw) for the specific system 
studied. 

As is more practical in liquid-liquid systems, the two-phase pressure drop is usually discussed 
in terms of pressure drop reduction compared with the superficial pressure drop of the more viscous 
phase, ~a,. This is shown in figure 7 for the various input water fractions and specified superficial 
oil velocities in the 5 and 20 cm tube diameters used in Oliemans' (1986) experimental set-up. For 
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the 5 cm tube, the calculated results are obtained at U=--- 105 cm/s (the experimental range is 
97-110 cm/s) and for viscosity ratios of  2300 and 3300, which cover the experimental range. The 
predictions by the present model for the 5 cm pipe [figure 7(a)] are fairly good. For  the 20 cm pipe, 
however, the model for the smooth pipe underestimates the measured values [figure 7(b)]. This can 
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be explained by recalling the difference in roughness which might exist between the two pipes. While 
the 5 cm pipe represents laboratory conditions, the 20 cm pipe (reported to be 888 m long, with 
22 right-angle bends) actually represents field operational conditions at a higher pipe roughness 
level. The increased roughness is to be attributed not only to manufacturing differences (clean pipe 
roughness scale), but also to the possible contamination of the pipe wall by the highly viscous wavy 
oil core, which is unavoidable in field operation. For the annular flow under consideration, 
contamination may take place as the wave amplitude is of the order of the water annular gap, and 
so is the resulting roughness scale, dr ~ h , / 2 -  h,, with hw = ( D -  D~)/2. Figure 7(b) includes 
calculated results for smooth, as well as rough large pipes, with E = dr/D, ~ 1/8 to 1/4, which yields 
fully rough surface conditions with f ,  = 2/(3 .2-  2.46 In E) 2 (Davies 1972). Thus, the inclusion of 
the enhanced roughness effect (compared with smooth laboratory conditions), yields a reasonable 
prediction for the large pipe experimental set as well. It is to be noted that for highly viscous core 
flow, the two-phase pressure drop is mildly dependent on the specific modeling of the interfacial 
friction factor, since the in situ velocities of both phases are predicted to approach the mixture 
velocity and (U c - U,)--*0 in [7]. Therefore, a possible increase in the interfacial friction factor due 
to interfacial waves is unlikely to be the reason for the high pressure drop observed in the field 
data. 

In general, following figure 7(a,b), the pressure reduction (which shows a flat minimum) is 
practically insensitive to the less viscous fluid input ratio, provided a critical fraction (about 2--4% 
water) is exceeded. Both the prediction and observations indicate that a remarkable pressure 
reduction can be obtained in a core flow pattern, and the pressure loss saving increases as the 
viscosity ratio increases. 

Scale-up and core flow performance 

The effects of the superficial oil velocity and pipe diameter are further demonstrated in figure 8. 
Both effects are combined by comparing annular oil-water flows of identical oil superficial 
Reynolds number and identical input water/oil fraction. As expected by the nondimensional 
analysis in section 2, the pressure drop ratio, ¢,s is uniquely dependent on ~b at the L-L regime 
(and diameter independent), while in the L-T regime it depends on both ~b and Re~ (or ~b and Re~). 
Reducing the superficial oil velocity or the pipe diameter (reducing Re,,) extends the range of the 
L-L flow regime to higher rates of water addition. In this range of water input ratios, the pressure 
reduction monotonously decreases towards its minimum (see figure 8). However, for higher 
superficial oil velocity or larger pipe diameter, the departure to the laminar oil-turbulent water flow 
regimes occurs at a lower input water fraction, beyond which the pressure reduction trend is flat, 
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Figure 8. Pressure drop reduction for constant oil Reynolds number. 
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with lower pressure loss savings. Clearly, for identical oil rates and pipe diameter, the inclusion 
of wall roughness (in the turbulent water regime) reduces even further the potential of pressure 
loss savings. 

The parameter which is of greatest practical interest is undoubtedly the pipe diameter, the effect 
of which refers to the problem of scale-up. Figure 9 represents the maximum pressure drop 
reduction (obtained at the minimum of figure 8) and the corresponding input water fraction, as 
a function of the tube diameter for constant superficial oil velocity. The required fraction of the 
less viscous liquid for obtaining the maximum pressure reduction varies only mildly with the tube 
diameter for pipes with D > 5 cm and, on average, is about ~ 8-9%. This is in excellent agreement 
with the observed range of 8-10% (Oliemans 1986). Note that for a given U,,  the minimum point 
is obtained with laminar oil-turbulent water conditions (figure 8). For rough pipes the minimum 
corresponds to the L-T transition point. 

The two-phase pressure drop ratio (at the maximum pressure reduction), figure 9(a), demon- 
strates a monotonous increase with the pipe diameter, for any given oil superficial velocity, hence 
the pressure drop reduction decreases. Also, increasing the oil superficial velocity (at a given 
diameter) adversely affects the potential of pressure drop reduction. 

The scale-up problem in evaluating the potential of a core flow configuration for achieving 
pressure reduction is more clearly demonstrated by exploring the pressure factor rI, defined in [16]. 
Its variation with the tube diameter and the fluid viscosity ratio is demonstrated in figure 10 for 
a constant oil flow rate (Uas = 100 cm/s) and about 1 and 10% water (@ = 10 and 100). As long 
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as laminar flow is maintained in the annular gap (small D) the pressure factor decreases with 
increasing tube diameter. When turbulence develops in the water annulus (higher D), the pressure 
factor levels off and its value becomes almost independent of the tube diameter. The evaluation 
(solid curves) is based on a transitional Reynolds number Re, = Dw uw/Vw = 1500. The dotted curves 
mark the 1-I values that would have been obtained with an annular laminar layer maintained at 
higher Reynolds numbers. 

Figure 10 shows that for a sufficiently low viscosity ratio, a value of FI < 1 may be reached, 
indicating that the two-phase pressure drop may be even less than the pressure drop evaluated for 
water flowing alone at the mixture velocity. With increasing oil viscosity, the pressure factor 
increases, approaching the asymptotic values predicted for /~a/#b~c~ by  [24a,b]. Hence, for 
extremely waxy oils, the pressure factor 11 is independent of the tube diameter as long as a turbulent 
annular layer is assured. 

The effect of the percentage of water added is further demonstrated in figure 11. It is 
shown that while for a laminar water annulus the pressure ratio sharply decreases with increasing 
the water addition, its sensitivity to q~ is much less pronounced with turbulent flow in the 
annular layer. 

Comparison with capsule models 

It is of interest to refer at this point to various capsule models available in the literature (Charles 
1963; Newton et al. 1964). These models treat either laminar or turbulent flow in the annular gap, 
formed by the free flow of a solid core in tubes. The present model, which accounts for the core 
viscosity, converges, in fact, to a capsule flow model in the limit of highly waxy core flow, with 
/~a//~b--* c~. Figures 10-12 show a comparison between the pressure factor predicted by the present 
model with Charles' (1963) laminar and turbulent capsules models. The lower values of 1-I obtained 
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with Charles' (1963) laminar capsule model are an outcome of the higher predicted values of the 
in situ water hold-up, as shown in figure 5. 

For a turbulent annular phase, closer agreement between Charles (1963) and the present model 
is noticed. It is to be noted that Charles' turbulent capsule model, which is based on the 7th 
power-law velocity distribution in the annular gap, also yields a diameter-independent pressure 
factor (see figure 10). Moreover, both models show a monotonous decrease of FI with increasing 
water addition. With laminar flow in the annular gap a pressure factor < 1 may be reached, even 
with extremely waxy oil cores. Yet, with a turbulent annular phase, the value of the pressure factor 
is always of the order of 1, indicating that capsules and very viscous oils may be transported with 
pressure losses almost identical to those of water flow at the combined two-phase volumetric rate, 
provided a core flow configuration can be maintained. 

Optimal pressure drop and power reduction 

As a summary, the maximum pressure drop reduction factor, r/m-max(¢~=) -t and the 
corresponding volumetric input ratio of the less viscous phase added, Rm = 1/(1 + ~bm), are 
presented in figure 13 for the L-L  and T-T extremes and various fluids pairs. Included, for 
comparison, is the Russell & Charles (1959) L-L  solution. Also, presented in figure 14 is the 
maximum possible power reduction which is related to the pressure drop reduction by 

I]/rn = max(~L~(4)/1 + ~b)). 
Clearly, the potential of pressure drop or power savings with the addition of a less viscous phase 

increases as the transported core becomes more viscous. Under the conditions of laminar flow in 
both phases, the solution is independent of the fluid densities. For turbulent conditions, as the 
density difference between the core and annular phases decreases, the possible reduction increases. 
It is to be noted also that the pressure and power reduction under laminar conditions are much 
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higher than those expected in turbulent flows. For mixed flow regimes, the reduction potential is 
between the L-L and T-T extremes. Clearly, for a highly viscous core, the core phase is practically 
always laminar. Consequently, only L-L or turbulent annulus-laminar core flows are relevant, 
whereas the T-T extreme is introduced here only as a limiting bound. 

5. CONCLUSION 

A model for predicting the pressure drop and in situ hold-up associated with the annular flow 
of two immiscible liquids in a horizontal pipe is presented. This flow pattern appears to be the most 
attractive as a way of reducing pressure losses and power requirements in the transportation of 
highly viscous oils with water injected into the pipe forming a lubricating annular layer. 

Nondimensional analysis shows that, in contrast to gas-liquid flows, where pressure drop and 
hold-up are well-correlated by the Martinelli parameter Z, liquid-liquid systems are generally 
dependent on both Z and the fluid flow rate ratio q~. This dependence is demonstrated for various 
fluids pairs, defined by the viscosity and density ratios (#a/#b, PJPb), and for a wide range of flow 
rates covering all possible flow situations of L-L, T-T or mixed flow regimes. 

Simple explicit expressions are derived for the pressure drop and hold-up associated with a 
laminar core (with either a laminar or turbulent annular layer). In the limit of a highly viscous core, 
# ~ / # b ~ ,  the present model converges to a solid capsule flow model, in which case the in situ 
velocities of both phases approach the mixture velocity, while the hold-up equals the input 
volumetric ratio. The corresponding pressure drop is comparable to that which would have been 
obtained with the less viscous fluid (water) flowing alone in the pipe at the combined mixture 
velocity. The pressure drop ratio is found to be independent of the tube diameter as long as a 
turbulent annular layer is maintained. 

In field operations, core flow configurations may demonstrate a lesser pressure reduction, due 
to possible contamination of the tube wall by the waxy oil. It is shown, however, that the present 
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model can be successfully extended to field conditions by introducing a fully rough surface model 
for the wall shear friction factor, 

Finally, it is to be noted that although the results presented cover wide ranges of operational 
liquid-liquid flow conditions, it is not assured that the annular configuration can always 
be maintained. The region of stable annular liquid-liquid flow and the transition boundaries 
to other possible flow patterns are the subject of subsequent papers (Brauner 1990; Brauner & 
Moalem Maron 1990, 1991a-c). 
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